Photoinduced Electron Transfer and Its Applications

Baowen Zhang, Yuanjun Hou, Puhui Xie, Kuiwang Wu, and Yi Cao

Institute of Photographic Chemistry
Chinese Academy of Sciences
Beijing 100101, China

Principle of the nanocrystalline electrochemical solar cell

Factors of Affecting the Performance of Dye-sensitized Solar Cells

- chemical, redox and photophysical and photochemical properties of the dye
- Structure, morphology optical and electrical properties of the nanoporous oxide layer
- visco-elastic and electrical properties of the electrolyte carrying the redox mediator
- electrical and optical properties of the counter electrode

Quantitative assessment of the solar cell performance

➤ IPCE:incident photon-to-current conversion efficiency for monochromatic radiation

>η_{eff}:overall white light-to-electrical conversion efficiency

Requirements for Efficient Sensitizers

- high stability in the oxidized, ground, and excited states
- suitable ground- and excited-state redox properties
- the presence of adsorbing group
- ✓ large spectral overlap with solar emission spectrum

- > Attaching Group
- > Steric Effect
- > Extending the spectral response of the sensitizer
- > Controlling of the charge recombination

Various types bipyridine ligands with different attaching groups that are being used in solar cell studies

Possible modes of the interactions between the sensitizers and the surfaces of semiconductor oxides

$$-C$$
 T_{i}
 $-C$
 $O-H-O$
 $O-H-O$

H-bonding

$$-C \bigcirc O - Ti$$

$$-C \bigcirc Ti$$

$$-C \bigcirc O$$

ester forming

chelating

bridge bonding

Performance of solar cells based on nanocrystalline TiO₂ sensitized by *cis*-RuL₂(NCS)₂

L	I_{sc}	Voc	ff	η%
	(mA/cm^2)	(mV)		
bpy-CO ₂ Et	1.8	380	0.47	0.5
bpy-CH ₂ OH	10	510	0.48	3.8
4,4'-(LL)	18	570	0.41	7.0
$bpy-PO(OEt)_2$	1.6	410	0.44	0.44
$bpy-PO_3H_2$	6.4	420	0.62	2.6

Inorg. Chem. 1996,35 5319-5324

Conclusion

Attaching group could alter the interaction between the sensitizers and surfaces of TiO₂ nanocrystalline electrodes, and good effect of sensitization can only be obtained when the interaction between the sensitizer and surface of semiconductor is strong

Steric Effect

cis-(NCS)₂Ru(3,3; -LL)₂

cis-(NCS)₂Ru(4,4; -LL)₂

cis-(NCS)₂Ru(5,5; -LL)₂

Photocurrent action spectrum for three photosensitizers measured on nanocrystalline TiO₂ solar cells

Absorption, Electrochemical, and Photoelectrochemical Properties

complex	$\lambda_{abs.max}$	E_0	I_{sc}	Voc	max
	(nm)	(V,vsSCE)	(mA/cm^2)	(V)	IPCE
3,3'-LL	570	0.87	8.0	0.47	0.213
4,4'-LL	535	0.85	18.4	0.57	0.671
5,5'-LL	580	0.95	7.8	0.49	0.366

IPCE(λ)=Φ_{inj} LHE(λ) η_c

IPCE= incident photo-to-current conversion
efficiency for monochromatic radiation,
effective quantum yield of the device
LHE=light harvesting efficiency

f_{inj}=charge injection yield
h_C=charge collection efficiency

$$\Phi_{inj} = \frac{k_{inj}}{k_r + k_{nr} + k_{inj}}$$

 k_{inj} =electron injection rate constant k_{nr} =nonradiative rate constant k_r =radiative rate constant

Energy-level diagram showing the excited-state processes occurring in ruthenium polypyridyl compounds

Nonradiative Decay of Excited State

* direct deactivation channel

* thermally activated decay path

Possible explanation for steric effect

- Changes in spatial hindrance of ligand which influence energy level will therefore have an impact on the nonradiative decay of the excited state
- Steric factor affects the electric coupling between the surface of nanocrystalline semiconductor and the sensitizers

Improvement of efficiency of the dye-sensitized solar cells

- Extending the spectral sensitivity of the dyes towards the red portion of the solar spectrum
- Controlling the rate of charge recombination

Extending MLCT Absorption to the red portion of solar emission

Synthesis of black dyes

Co-sensitization

Schematic energy-level diagram for an octahedral transition metal complex

Metal Orbitals

Molecular Orbitals

Ligand Orbitals

Strategy for Designing of "Black Sensitizer"

Decreasing the energy of the ligand p* orbital

Raising the energy of the metal t_{2g} orbital

Disadvantages

- Stabilization of the p* levels of the diimine ligands can result in a poor interfacial charge separation yield
- Decreasing the metal-based reduction potential can result in sluggish iodide oxidation rates

Structure of the black dye

Coordination Chemistry Reviews 1998, 177, 367

Photocurrent action spectrum of black dye

Novel Black Dyes

[Ru(*p*-COOH-phenyl-tpy)(NCS)₃]

trans-Ru(dcbpy)₂(NCS)₂

Absorption spectra

Action spectra

Summary

The efficiency can be improved by co-sensitization by utilizing dyes with complimentary absorption bands modified surface to capture the broad spectral output of solar radiation

Approach to increasing photovoltage

- ➤ adding pyridine derivatives to the electrolyte to inhibit recombination of injected electrons with I₃⁻
- ➤ translating vectorially the hole away from the sensitizer through intramolecular electron transfer

J. Chem. Edu. 1997 P652-656

J. Am. Chem. Soc. 2000, 122, 2840-2849

Data of treatment with Phenothiazine derivative

	I_{sc}	V_{oc}	ff
	(mA/cm ²)	(mV)	(%)
untreated	9.0	610	58
treated	7.7	650	66

Intermolecular electron transfer on the Surface

Summary

Introduction of electron donor could increase the photovoltage and improve the energy conversion efficiency

Conclusion

- selectronic coupling is crucial parameter for efficient photosensitization
- belectronic coupling can be mediated by the attaching group and steric factor
- the efficiency can be improved by cosensitization
- introduction of electron donor can improve the efficiency of solar cell

Acknowledgements

Yi Cao

Baowen Zhang

Puhui Xie

Kuiwang Wu

Xiaohui Li

National Science Foundation of China

$$k_{nr} \propto \exp\left(-\frac{gE_0}{\hbar \mathbf{w}_M}\right)$$
 (1)

$$\mathbf{g} = \ln(\frac{E_0}{S_M \hbar \mathbf{w}_M}) - 1 \tag{2}$$

$$S_{M} = \frac{1}{2} \left(\frac{M \mathbf{w}}{\hbar} \right) (\Delta Q_{e})^{2}$$
 (3)

Graphical illustration of the factors influencing vibrational overlap for non-radiative excited-state decay

 $TiO_2(e^-)-Rh(II)-Ru(III) \longrightarrow TiO_2-Rh(III)-Ru(II)$

 $TiO_2(e^-)-Ru(III) \longrightarrow TiO_2-Ru(II)$

